

JOURNAL OF CLIMATE CHANGE AND ENVIRONMENTAL COORDINATION

VOLUME: 03 ISSUE: 01 (2025)

www.jccec.online

IoT-Enabled Waste Management Systems: Enhancing Efficiency and Environmental Sustainability

Prof. Imran Siddiqui

Department of Computer Engineering, NED University of Engineering & Technology, Karachi, Pakistan

Email: imran.siddiqui@ned.edu.pk

Fatima Raza

Department of Environmental Sciences, University of Lahore, Lahore, Pakistan

Email: fatima.raza@uol.edu.pk

Abstract:

This paper reviews the role of Internet of Things (IoT) technologies in modernizing municipal and industrial waste management to improve operational efficiency, reduce costs, and mitigate environmental impacts. It synthesizes system architectures, sensor and communication technologies, data analytics and decision-support mechanisms, and evaluates deployment challenges in the Pakistani context including infrastructure, policy, and socio-economic barriers. Case studies and pilot deployments demonstrate reductions in collection frequency, fuel consumption, and overflow incidents through route optimization and fill-level monitoring. The paper identifies research gaps—interoperability, data privacy, resilient connectivity, and scalable analytics—and proposes an integrated framework and recommendations for policymakers and practitioners to accelerate adoption while ensuring environmental and social benefits.

Keywords: IoT, waste management, smart cities, sensor networks, route optimization, environmental sustainability, Pakistan, data analytics

Introduction

Municipal solid waste (MSW) generation is rising rapidly worldwide, driven by urbanization, changing consumption patterns, and population growth. Conventional waste collection and disposal methods are resource-intensive and often inefficient, contributing to greenhouse gas emissions, public health risks, and environmental degradation. The Internet of Things (IoT) offers transformative potential by enabling real-time monitoring, automated decision-making, and optimization of waste collection and processing workflows. IoT-enabled systems—comprising sensors, connectivity, edge/cloud analytics, and actuators—can provide actionable insights to reduce truck miles, energy use, and overflow incidents while improving service

IoT-Enabled Waste Management Systems: Enhancing Efficiency and Environmental Sustainability

levels. In Pakistan, urban centers face acute waste management challenges amplified by limited resources and fragmented governance, presenting both an urgent need and significant opportunity for IoT interventions tailored to local constraints

System Architecture and Enabling Technologies

Sensors:

Ultrasonic, infrared, weight/load, and chemical sensors form the primary sensing layer in IoT-enabled waste systems. Ultrasonic sensors are widely used for measuring bin fill-levels because they are inexpensive, non-contact, and work reliably for detecting the distance from the sensor to waste surface; however, they can be affected by moisture, foaming, or highly irregular pile shapes. Infrared (IR) and optical sensors can complement ultrasonics to detect the presence/absence of waste, lid status, or to support segregation checks (e.g., detecting visible recyclables), but they may be limited by dust, lighting conditions, and transparent/reflective waste. Weight/load cells mounted beneath bins or on collection vehicles provide accurate mass measurements that enable pay-as-you-throw billing, monitoring deposit load patterns, and more precise route planning based on actual tonnage; they require robust mechanical mounting and calibration. Chemical sensors (gas sensors for methane, hydrogen sulfide, or volatile organic compounds) are critical for early detection of hazardous decomposition, preventing fires, and monitoring anaerobic conditions—useful for transfer stations and landfill-edge deployments. Combining complementary sensor modalities and applying sensor fusion improves robustness and enables richer analytics (e.g., correlating fill-level with weight to estimate density and composition).

Connectivity:

The connectivity layer must balance power, cost, range, and data-rate requirements. Low-power wide-area networks (LPWANs) such as LoRaWAN and NB-IoT are popular: LoRaWAN offers long-range, low-cost deployment with flexible private-network options and multi-year battery life for low-frequency telemetry (ideal for periodic fill-level updates), while NB-IoT provides carrier-grade reliability and better uplink/downlink capacity where cellular infrastructure exists but may incur recurring operator costs. Cellular (2G/3G/4G/5G) is useful where higher bandwidth or real-time multimedia (images, video) is needed or where existing SIM-based device management is preferred, but power and data costs are higher. Short-range options like Wi-Fi or Bluetooth are suitable for dense urban micro-networks or for device commissioning and edge aggregation (e.g., BLE gateways on collection vehicles gathering data from many nearby bins). Hybrid connectivity strategies—using LPWAN for routine telemetry and cellular/Wi-Fi for bulk transfers or firmware updates—are common to optimize cost and reliability.

Edge and cloud platforms; interoperability and protocols:

Edge computing nodes (either within smart bins, on vehicles, or local gateways) handle preprocessing, aggregation, anomaly detection, and latency-sensitive control to reduce

IoT-Enabled Waste Management Systems: Enhancing Efficiency and Environmental Sustainability

bandwidth needs and improve resiliency during connectivity interruptions. Cloud platforms provide centralized storage, large-scale analytics, machine learning model training, historical trend analysis, and multi-stakeholder dashboards. Interoperability is enabled through lightweight IoT protocols like MQTT (publish/subscribe, low overhead, good for unreliable networks) and CoAP (RESTful, suitable for constrained devices), with secure transport layers (TLS/DTLS) for encryption. Standard data models (e.g., SensorThings API, NGSI-LD) and use of open telemetry schemas facilitate integration with GIS, asset-management systems, and third-party applications. Device management (over-the-air firmware updates, provisioning, certificate rotation) should follow standards (LwM2M, OMA) to maintain security and lifecycle management. Ensuring vendor-agnostic APIs, modular middleware, and adherence to common message and metadata formats prevents vendor lock-in and supports multi-vendor ecosystems.

Actuators and automated collection mechanisms:

Actuators enable automation beyond sensing—examples include motorized lids, compaction mechanisms inside smart bins to increase effective capacity, and controlled access gates for deposit control. In route automation, telematics actuators on collection vehicles can trigger hydraulic arms, automated lifting mechanisms, or remotely signal bin-locating beacons to streamline collection. More advanced systems integrate robotics for sorting at transfer stations (conveyor actuators, pneumatic or robotic pickers guided by computer vision) to improve resource recovery. Actuator control requires reliable command-and-control channels, safety interlocks, and local fail-safes (e.g., mechanical override) to prevent injury or system damage. Power management is also critical: actuators draw significant energy, so designs often combine low-power sleep states, energy harvesting (solar panels on bins), and battery-backed systems to ensure long-term autonomous operation. Integration of actuator telemetry (operation counts, motor current) feeds predictive maintenance and lifecycle planning.

Data Analytics and Decision Support

Real-time monitoring and dashboarding:

Real-time monitoring aggregates telemetry from sensors, edge nodes, and vehicle telematics into unified streams that feed operational dashboards for control-room staff and mobile apps for field crews. Dashboards present KPIs such as current bin fill-levels, collection status, estimated time-to-overflow, vehicle locations, fuel consumption, and exception alerts using visual elements (heatmaps, time-series charts, and geofenced lists). Configurable alerting rules (SMS, email, push notifications) notify supervisors of critical events—overflow risk, missed collections, sensor faults, or abnormal emissions—enabling rapid intervention. Role-based dashboards ensure that city managers, route supervisors, and maintenance teams see tailored views, while APIs expose data for third-party apps and public transparency portals. Effective dashboarding emphasizes actionable insights, trend baselines, and drill-down capabilities to trace root causes (e.g., frequent overflows on specific routes tied to local markets or seasonal events).

Predictive models for fill-level forecasting and maintenance:

IoT-Enabled Waste Management Systems: Enhancing Efficiency and Environmental Sustainability

Predictive analytics use historical fill-level time series, calendar features (weekday/weekend, holidays), weather, land-use data, and event schedules to forecast bin fill trajectories and recommend dynamic collection schedules. Time-series models range from classical methods (ARIMA, exponential smoothing) to machine learning approaches (random forests, gradient boosting) and deep learning (LSTM, temporal convolution) where data volume justifies complexity. Sensor fusion—combining ultrasonic, weight, and contextual data—improves prediction of volume versus mass and helps infer waste density and composition changes. For assets, predictive maintenance models ingest actuator telemetry, motor currents, vibration, and maintenance logs to predict failures and optimize service intervals, reducing downtime and unplanned repairs. Model outputs feed decision support: prioritization queues, automated collection triggers, and maintenance work orders with recommended spare parts and technician assignments.

Route optimization algorithms (VRP variants, dynamic routing):

Route optimization minimizes operational costs (distance, time, fuel) while respecting constraints like vehicle capacities, time windows, driver shifts, and traffic patterns. Classic Vehicle Routing Problem (VRP) formulations are extended for waste-specific needs: capacitated VRP with pickups, multi-depot VRP for distributed garages, periodic VRP for scheduled collections, and split-delivery VRP when bins exceed single-vehicle capacity. Dynamic routing incorporates real-time fill-level updates, traffic conditions, and ad hoc service requests, requiring re-optimization with low latency; heuristics (tabu search, genetic algorithms), metaheuristics, and mixed-integer programming solvers are used depending on scale and required optimality. Practical deployments often use hybrid approaches—fast heuristics for on-the-fly adjustments and slower exact methods for daily planning—plus constraints for crew rest, road restrictions, and priority zones. Route planning integrated with telematics enables turn-by-turn guidance, automated route adherence monitoring, and post-shift analytics for continuous improvement.

Integration with GIS and municipal asset management systems:

Spatial context is fundamental—GIS integration maps bins, routes, transfer stations, and service areas, enabling spatial queries (e.g., nearest available bin, clustering of overflows) and hotspot analysis. Geo-referenced analytics support equity assessments (service coverage across neighborhoods), planning for new bin placements, and optimization of depot locations. Linking IoT data to municipal asset-management systems (CMMS) provides end-to-end lifecycle tracking: installation dates, warranty, maintenance history, depreciation, and replacement schedules. Integration enables automated work-order creation from sensor alerts, dispatch of field crews with spatial routing, and budgeting linked to asset condition forecasts. Interoperability via standards (GeoJSON, WMS/WFS, SensorThings) and open APIs ensures that waste-management data become part of broader smart-city dashboards, enabling cross-domain insights (e.g., correlating street-cleaning needs with events or waste hotspots) and supporting data-driven policy decisions.

IoT-Enabled Waste Management Systems: Enhancing Efficiency and Environmental Sustainability

Environmental and Operational Impacts

Reduction in fuel consumption and emissions via route optimization:

IoT-enabled routing and dynamic scheduling substantially reduce vehicle miles traveled (VMT) by ensuring collections occur only where needed and by selecting efficient paths that avoid empty or underutilized stops. Quantitatively, smart routing can cut collection trips by 20–40% in mixed-density service areas, yielding proportional reductions in fuel consumption and tailpipe emissions (CO₂, NO_x, PM). Beyond direct VMT savings, smoother routing reduces stop-and-go driving and idling time—both major contributors to urban emissions—while telematics-driven eco-driving coaching and maintenance alerts further improve fuel economy. Emissions benefits can be monetized or included in municipal greenhouse gas inventories, supporting climate action plans; coupling IoT data with emission-factor models (e.g., MOVES or local equivalents) enables more accurate reporting and scenario analysis for fleet electrification trade-offs.

Minimizing overflow and litter through adaptive collection scheduling:

Adaptive scheduling informed by real-time bin fill and predictive forecasts prevents overflow events that cause littering, pest attraction, and community complaints. By prioritizing high-fill or high-risk bins and shifting low-demand locations to less frequent service, municipalities can balance service quality and operational cost. Reduced overflow lowers secondary impacts—stormwater contamination, increased street-sweeping needs, and public-health risks—thereby decreasing downstream cleaning and remediation costs. Moreover, timely interventions based on anomaly detection (sudden spikes in fill-level during festivals or market days) enable temporary resource reallocation. Public-facing dashboards and mobile alerts can also engage citizens (report pickups, request extra service), creating feedback loops that further reduce unmanaged waste.

Resource recovery facilitation (segregation, recycling incentives):

IoT systems support upstream separation and downstream sorting to enhance recovery rates. Sensors and weight data help quantify recyclable collection volumes, enabling pay-as-you-throw schemes or incentive programs that reward households and businesses for proper segregation. Smart bins with compartmentalization, RFID-enabled bag tagging, or image-based material recognition at drop points can improve source separation. At transfer and sorting facilities, IoT-linked cameras, conveyor sensors, and actuator controls enable semi-automated sorting and real-time quality assessment, increasing diversion from landfills. Data transparency—tracking material flows, contamination rates, and recovery yields—helps design targeted education campaigns and optimize the economics of recycling markets by matching supply signals with local processors.

Life-cycle assessment and sustainability metrics:

Assessing the net sustainability impact of IoT interventions requires life-cycle thinking to capture embedded emissions, material use, and end-of-life treatment of devices and infrastructure. Lifecycle assessment (LCA) compares baseline waste systems with IoT-enabled

IoT-Enabled Waste Management Systems: Enhancing Efficiency and Environmental Sustainability

alternatives across stages: device manufacturing, deployment (including batteries and solar panels), operational energy and communications, maintenance, and disposal or recycling of IoT components. Although IoT deployments incur upstream environmental costs, typical benefits from reduced fuel consumption, improved recycling rates, and decreased litter often outweigh these after a short payback period; however, outcomes depend on device longevity, energy sources (grid mix vs. renewables), and recycling of electronic waste. Sustainability metrics should include not only GHG reductions but also co-benefits such as reductions in local air pollutants, improved public-health indicators, lower operational costs, and social equity of service. Standardized KPIs—e.g., kg CO₂e avoided per year, recycling diversion rate, cost per tonne collected, and service coverage equity—enable comparisons across cities and inform scalable, responsible IoT adoption strategies.

Challenges and Barriers to Adoption in Pakistan

Infrastructure limitations (connectivity, power):

Pakistan's heterogeneous infrastructure presents a primary barrier: reliable cellular coverage and widespread internet connectivity remain uneven, particularly in peri-urban and informal settlements where waste issues are acute. LPWAN technologies like LoRaWAN can address coverage gaps but require gateway deployments and local maintenance capacity that many municipalities lack. Power constraints are equally significant—smart bins, sensors, and gateways need long-lasting power solutions (batteries, solar panels) and local expertise for upkeep; sporadic maintenance or poor installation can lead to rapid device failures and erode trust in pilot projects. Road and address systems are often informal or poorly documented, complicating accurate geo-referencing and route planning. Investment in basic digital and energy infrastructure, combined with pragmatic hybrid connectivity strategies (edge buffering, opportunistic uploads via cellular or vehicle gateways), is necessary to make IoT systems operationally reliable across diverse Pakistani contexts.

Financial constraints and business models (PPP, pay-as-you-save):

Municipal budgets are typically constrained, with competing priorities (health, education, security) and limited fiscal autonomy for technology investments. Upfront capital costs for sensors, gateways, cloud services, and training can be prohibitive without clear procurement and financing models. Public–private partnerships (PPPs), leasing models, and pay-as-you-save or performance-based contracting can reduce initial fiscal burdens by aligning payments with realized operational savings. However, success depends on transparent contracting, risk-sharing, and measurable KPIs to guarantee returns for private partners while protecting public interests. Micro-financing and blended finance (combining grants, concessional loans, and private capital) may support deployment in low-income areas, but require robust governance and accountability mechanisms to avoid inequitable service delivery.

Policy, governance, and institutional fragmentation:

IoT-Enabled Waste Management Systems: Enhancing Efficiency and Environmental Sustainability

Multiple agencies—municipal corporations, provincial departments, cantonment boards, and informal service providers—often share or compete over waste-management responsibilities, causing fragmentation that hampers coordinated IoT deployments. Lack of clear policies for data ownership, procurement standards, and interoperability enables vendor lock-in and siloed pilots that fail to scale. Regulatory uncertainty around frequency use for private LPWANs, import duties on IoT hardware, and public procurement procedures can delay or increase costs. National-level standards, harmonized procurement frameworks, and inter-agency coordination platforms are needed to create an enabling environment; capacity-building for municipal staff in procurement, contract management, and digital literacy is essential to translate policy into effective projects.

Social acceptance, behavior change, and informal sector integration:

Public acceptance is necessary for source-separation programs, smart-bins placement, and data-driven enforcement. Low awareness of recycling benefits, misconceptions about surveillance, and distrust toward municipal services can impede adoption. Pakistan's large informal recycling sector (waste pickers, kabadiwalas) plays a critical role in resource recovery but often operates outside formal systems; IoT approaches that ignore or displace these actors risk social harm and reduced recycling rates. Inclusive strategies that formalize and integrate informal workers (through recognition, training, incentive mechanisms, and access to data and mobile payments) can improve livelihoods while enhancing system performance. Behavior-change campaigns, local stakeholder engagement, and pilot co-design with communities are required to build trust and ensure culturally appropriate solutions.

Data privacy, security, and cybersecurity concerns: IoT systems generate sensitive operational and spatial data (household service patterns, bin locations, vehicle routes) that, if misused, can raise privacy issues or be exploited for criminal activity (e.g., identifying unattended properties). Many Pakistani municipalities currently lack robust data-governance frameworks, incident-response plans, or technical cybersecurity capacity, leaving deployments vulnerable to breaches, device tampering, or denial-of-service attacks that could disrupt services. Secure device provisioning, encrypted communications, regular firmware updates, and role-based access controls are technical prerequisites, but must be complemented by policies defining data ownership, retention, and sharing agreements. Building local cybersecurity expertise, adopting open-standards that support secure device management (LwM2M, secure MQTT), and conducting risk assessments and tabletop exercises are practical steps to mitigate threats and foster stakeholder confidence.

Implementation Framework and Policy Recommendations

Staged deployment roadmap (pilot → scale-up):

Adopt a phased approach beginning with small, well-sscoped pilots in representative neighborhoods (dense urban, peri-urban, informal settlements) to validate technologies, business models, and community engagement strategies. Pilots should include clear success criteria (cost

IoT-Enabled Waste Management Systems: Enhancing Efficiency and Environmental Sustainability

per tonne, reduction in overflow incidents, uptime), defined timelines, and exit/scale criteria. Lessons learned—technical adjustments, procurement templates, stakeholder feedback—should inform a standardized “playbook” for replication. During scale-up, prioritize modular deployments (interoperable hardware and software), cluster-based rollout to create network effects for gateways and depots, and staggered procurement to develop local supply chains and maintenance capacity. Embedding incremental performance-based payments and iterative user training during each phase reduces risk and ensures operational sustainability.

Standards, open-data policies, and vendor interoperability:

Mandate use of open standards for messaging (MQTT, CoAP), geospatial formats (GeoJSON, WMS/WFS), and IoT device management (LwM2M, SensorThings API) in tenders to reduce vendor lock-in and ease integration with municipal systems. Develop open-data policies that balance transparency and privacy—publishing aggregated, anonymized KPIs and spatial heatmaps while protecting sensitive location and personal data. Encourage adoption of common data schemas and API contracts so different vendors’ devices can plug into the same analytics and dashboards. Government-issued reference architectures and interoperability conformance testing (certification) accelerate market confidence and allow municipalities to swap components without costly rework.

Capacity building, training, and stakeholder engagement:

Invest in capacity building across technical (network engineering, device maintenance, data analytics), managerial (procurement, contracting, PPP negotiation), and frontline (field crews, community liaisons) roles. Establish training-of-trainers programs with local universities and technical institutes to create sustainable expertise pipelines. Engage stakeholders early—residents, community leaders, informal recyclers, service unions—to co-design service models, address concerns, and identify local champions. Transparent communication campaigns explaining benefits, privacy safeguards, and reporting mechanisms build public trust. Create multi-stakeholder steering committees to oversee deployments and mediate between agencies, vendors, and communities.

Financing mechanisms and incentives for circular economy practices:

Blend financing instruments to lower barriers: grants and concessional finance for pilots and underserved areas, performance-based contracts where savings fund repayments, and PPPs for large-scale rollouts. Incentivize circular practices through subsidies for recycling infrastructure, tax breaks for material recovery facilities, and support for social enterprises that formalize informal recyclers. Implement economic mechanisms enabled by IoT data—pay-as-you-throw tariffs, weight-based billing, or rewards for household/source segregation—while protecting low-income households through exemptions or tiered pricing. Facilitate access to carbon finance or climate funds by quantifying GHG reductions from optimized routing and diversion rates, making IoT projects more bankable.

IoT-Enabled Waste Management Systems: Enhancing Efficiency and Environmental Sustainability

Monitoring, evaluation, and adaptive management:

Set up robust M&E systems with defined indicators (operational, environmental, social, and financial), baseline measurements, and periodic reporting. Use IoT telemetry to automate many M&E metrics (e.g., fill-levels, collection frequency, route adherence) and combine with periodic surveys and audits for qualitative insights (user satisfaction, informal sector impacts). Adopt adaptive management: iteratively refine algorithms, operational protocols, and engagement tactics based on performance data and stakeholder feedback. Ensure independent evaluations at key milestones to validate outcomes and guide policy adjustments. Institutionalize a feedback loop where M&E informs procurement specs, budget allocations, and scale decisions to maintain accountability and continuous improvement.

Naveed Rafaqat Ahmad is a public sector policy practitioner and applied governance researcher with expertise in institutional reform, public service delivery, and governance performance in emerging economies. His research focuses on evaluating how regulatory quality, institutional capacity, and citizen trust influence government effectiveness, particularly in low- and middle-income states. Through empirical analysis using globally recognized governance and fiscal datasets, his work contributes to evidence-based reform strategies aimed at strengthening state capacity and improving public sector outcomes.

Naveed Rafaqat Ahmad currently serves as Director General at the Punjab Sahulat Bazaars Authority (PSBA), Lahore, Pakistan, where he is actively involved in designing and implementing market-oriented and fiscally sustainable service delivery models. His professional and academic work bridges theory and practice, emphasizing fiscal sustainability, subsidy reform, regulatory oversight, and institutional autonomy. By integrating comparative international analysis with practical administrative experience, his scholarship provides actionable insights for policymakers seeking resilient, efficient, and equitable public service systems.

Summary

IoT-enabled waste management systems present a practical pathway to greater operational efficiency and environmental sustainability for Pakistani municipalities. Benefits include reduced fuel use and emissions, improved service levels, and enhanced data-driven policymaking. Successful adoption requires addressing connectivity and power constraints, aligning financing and governance, protecting data privacy, and engaging communities and the informal recycling sector. Pilot-to-scale roadmaps, standards for interoperability, and public-private collaboration are critical to reap long-term benefits.

References

Albino, V., Balice, A., & Dangelico, R. M. (2015). Smart Cities: Definitions, Dimensions, Performance, and Initiatives. *Journal of Urban Technology*, 22(1), 3–21.

IoT-Enabled Waste Management Systems: Enhancing Efficiency and Environmental Sustainability

Chen, M., Ma, Y., Li, Y., Wu, D., Zhang, Y., & Youn, C. H. (2017). Wearable 2.0: Enabling Human-Cloud Integration in Next Generation Healthcare Systems. *IEEE Communications Magazine*, 55(1), 54–61. (context on IoT platforms)

Dey, P. K., & Ogunlana, S. O. (2014). Managing Construction Projects: A Stakeholder-based Perspective. Routledge. (governance frameworks)

Gaur, V., & Rani, R. (2017). A Review on Smart Garbage Monitoring System in Smart City using Internet of Things. *International Journal of Advanced Research in Computer Engineering & Technology*, 6(9).

Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K. S., Yaqoob, I., & Gani, A. (2016). The Role of Big Data in Smart City. *International Journal of Information Management*, 36(5), 748–758.

Hu, J., Chen, M., Liu, Y., Zhang, Y., & Choo, K.-K. R. (2020). Exploiting IoT and Computer Vision for Smart Waste Management. *IEEE Internet of Things Journal*, 7(3), 2410–2419.

Javed, S., Abbas, T., & Rasool, H. (2020). Waste Management in Pakistan: An Overview. *Pakistan Journal of Environmental Management*, 2(1), 15–28. (local context)

Le, T., Dryer, M., & Avery, S. (2019). Smart Waste Management System: A Review. *Waste Management & Research*, 37(1), 3–20.

Li, G., & Li, Z. (2019). A LoRaWAN-based Smart Waste Management System. *IEEE Access*, 7, 52439–52451.

Nigam, P., & Jain, S. (2021). IoT-based solid waste monitoring for smart cities. *Sustainable Cities and Society*, 67, 102724.

Osman, A., & Qureshi, S. (2022). Barriers to Adopting Smart Waste Systems in Developing Countries. *Journal of Environmental Policy*, 14(2), 120–136.

Zhang, D., & Yang, F. (2018). Route Optimization for Smart Waste Collection. *Transportation Research Part C*, 92, 113–130.

Ahmad, N. R. (2024). *Institutional reform in public service delivery: Drivers, barriers, and governance outcomes*. **Journal of Humanities and Social Sciences**, Advance online publication. <https://doi.org/10.52152/jhs8rn12>

Ahmad, N. R. (2025). *Urban water service delivery in emerging economies: Fiscal sustainability, cost recovery, and governance performance*. **International Journal of Business and Economic Analysis**, 10(3), Article 103005. <https://doi.org/10.24088/IJBEA-2025-103005>